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The magnetic structure of the noncentrosymmetric cubic magnets with Dzyaloshinskii-Moriya interaction
Mn1−yFeySi with y=0.0,0.06,0.08,0.10 has been studied by means of the small angle neutron diffraction and
magnetization measurements. The compounds order in the spin helix structure below Tc that decreases linearly
with the Fe doping and approaches zero at y�0.13. We build the �H-T� phase diagrams for each compound
and interpret them on the basis of the Bak-Jensen hierarchical model of the principal interactions. Among these
interactions are the spin-wave stiffness that decreases linearly with y, obviously duplicating the change of Tc,
and the Dzyaloshinskii interaction showing the moderate evolution with y. It is shown that these compounds
undergo the transition from the paramagnetic to helimagnetic phase through the intermediate chiral fluctuating
phase. The discussion is given on the comparison of the �T-P� phase diagram in pure MnSi and �T-y� phase
diagram of the Mn1−yFeySi compounds showing the role of the principal interactions on the critical temperature
Tc of these systems.
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I. INTRODUCTION

The magnetic and transport properties of MnSi, the non-
centrosymmetric cubic magnet with the space group P213,
have been a subject of intensive investigations for several
decades. The first wave of the interest was devoted to the
origin of the magnetic structure ordering below Tc=29 K in
a left-handed spiral along the �111� directions with a propa-
gation vector k=0.36 nm−1 at T=4 K.1–3 The spin helicity
had been understood to be a result of the equilibrium be-
tween the isotropic ferromagnetic exchange interaction and
the antisymmetric Dzyaloshinski-Moriya �DM� interaction
caused by the lack of a symmetry center in Mn atomic
arrangement.4–7 These two interactions are considered isotro-
pic themselves but another weak anisotropic exchange �AE�
interaction pins a direction of the helix along one of the cube
diagonals.5 This hierarchical model of interactions had ex-
plained most, if not all, experimental facts known at that
time. The calmed down interest had been triggered again by
the discovery of the quantum phase transition �QPT� under
applied pressure and non-Fermi-liquid behavior of charge
carriers at the QPT.8–10 The second wave of interest heated
up by the possible application of MnSi and relative
systems11,12 in modern spintronic devices, seems, reaches its
maximum today although neither the role of the DM inter-
action in this QPT was clarified nor any other parameter,
which would be responsible for it, has been established up to
now. Since neither ferromagnetic exchange interaction nor
DM interaction change under applied pressure the QPT must
be governed by the unknown “hidden” parameter.

A possible candidate for this parameter has been recently
suggested in Ref. 13, where the small spin-wave gap was
introduced. The author of Ref. 13 has shown that the helix
structure is intrinsically unstable with respect to the small

magnetic field applied perpendicular to the helix wave vector
k unless it is stabilized via a small gap in the spin-wave
spectrum. Luckily for these systems, the spin-wave interac-
tion in presence of the DM interaction guarantees appearance
of a small but positive gap of order of D2 /A, where D is the
strength of DM interaction and A is the spin-wave stiffness at
large momenta. However, the magnetoelastic interaction
gives always a negative contribution to the gap.14 These dif-
ferent contributions to the gap compete and the gap may get
closed at certain conditions, for example, under increasing
pressure, thus destabilizing the system and driving it to the
QPT.

In accord to the well established hierarchical model,5 the
cubic magnets without center of symmetry find their equilib-
rium in the helical ordering with the helix wave vector

k = SD/A . �1�

The microscopic theory for these systems under magnetic
field was recently developed,13 where the ground-state en-
ergy and the spin-wave spectrum were evaluated. It is re-
markable that the theory is able to relate the anisotropy con-
stant F and the spin-wave stiffness A to the critical fields
HC1, which suppresses the cubic anisotropy, and HC2, deter-
mining the transition to the ferromagnetic state, respectively,
through the following expressions:

g�BHC1 �
Fk2

2
, �2�

g�BHC2 = Ak2 �3�

�where g is the Landè factor and �B is the Bohr magneton�.
Combining these expressions with the definition of k �Eq.
�1�� one is able from the parameters of the magnetic structure
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measured in the experiment �k, HC1, and HC2�, to estimate
the principal interactions of these systems, such as the spin-
wave stiffness A=g�BHC2 /k2, the anisotropy constant F
�2g�BHC1 /k2, and the Dzyaloshinskii constant SD=Ak
�where S is the average spin of unit cell�.

One of the most intriguing features of the �H-T� phase
diagram of these compounds is the A phase. It is experimen-
tally observed as the phenomenon of the 90° flop of the helix
wave vector k from the direction parallel to the field axis to
the direction perpendicular to it in a small pocket of the H-T
phase diagram near Tc in the narrow range of the fields H
�Hfl.

15 We have related this phenomenon to the spin-wave
gap caused by the DM interaction and predicted in13

� � g�BHfl/�2. �4�

From one hand, the existence of the gap provides an expla-
nation for the appearance of A phase in the �H-T� phase
diagram of MnSi and the relative compounds. Equally, the
existence of the A phase can be considered as an indirect
proof for importance of the spin-wave gap predicted in the
theory.

The theory given above was first applied to MnSi. As was
shown in Refs. 15 and 16 the whole set of the experimental
data concerning the �H-T� phase diagram can be well inter-
preted on the basis of this theory. Furthermore, it was able to
describe the principal interactions in the relative system
Fe1−xCoxSi �Refs. 17 and 18� as well, where it was demon-
strated that �i� the spin-wave stiffness A increases monoto-
nously with the concentration x and demonstrate no correla-
tion to the critical temperature Tc. The latter shows a slightly
asymmetric bell-like shape as function of the Co concentra-
tion x with a maximum at x�0.35. In its turn, the x depen-
dence of the DM interaction, coupled to the average value of
the spin, SD resembles the behavior of Tc. As will be shown
below, Dzyaloshinskii constant D remains unchanged with
concentration x, but S follows closely the Tc�x� behavior.

The present paper is aimed to follow the change in the
principal interactions in MnSi doped by Fe and afterward to
determine their roles in the linear upon doping decrease in
the ordering temperature. The doped compounds Mn1−yFeySi
and their magnetic properties had been studied by the Möss-
bauer method19 showing that ferromagnetism disappears at
y	0.15. Two mechanisms are suggested to explain the effect
of doping on the magnetic structure. In the mechanism of the
localized picture Fe doping makes neighboring Mn atoms
lose their spin ordering due to frustration of the exchange
interaction. The disappearance of the magnetic order can be
attributed to the increase in the number of nonmagnetic Mn.
The itinerant picture of magnetism suggests that the replace-
ment of Fe for Mn atoms produces an excess in a number of
d electrons and magnetic moment disappears around �nd
=0.15. Authors of Ref. 19 are in favor of the second, itiner-
ant, mechanism but, in our view, the first one is credible as
well. From the simple symmetric consideration is known that
each magnetic atom in P213 structure has six close neighbor
magnetic atoms. The concentration of y=0.15 signifies that
each sixth Mn atom is replaced by Fe and consequently all
the magnetic atoms Mn of the compound possess a frustra-
tion of the exchange integral that is averaged out leading the

system to a disordered state, or, the spin glass state at low
temperature. In analogy to the QPT in MnSi driven by pres-
sure at zero temperature one can consider the QPT in
Mn1−yFeySi driven by concentration at T=0. The transforma-
tion of the magnetic structure Mn1−yFeySi with doping mim-
ics rather well the changes undergoing in pure MnSi under
applied pressure. Using small angle neutron scattering
�SANS�, Quantum Design PPMS measurements we build the
�H-T� phase diagrams for the series of Mn1−yFeySi and
evaluate the effect of Fe doping on the principal interactions
�such as A, D, F, and ��. We show that the system
Mn1−yFeySi is governed by the same set of the principal in-
teractions but in a different way as compared to its relative
Fe1−xCoxSi compound.

To conclude Sec. I, we remind the reader of a puzzle of
the left-handed chirality of the spin helix.1–3 One can predict
that a new wave of interest will arise to these systems with
DM interaction for their property of broken degeneracy of
mirroring.20

The outline of this paper is as follows. The polarized
SANS measurements are presented in Sec. II. Section III
presents the �H-T� phase diagrams of the system under study
and gives the concentration dependence of the principal in-
teractions of the system. Section V presents the concluding
remarks.

II. MEASUREMENTS

A. Experimental

The single crystals Mn1−yFeySi with the concentrations
y=0.00, 0.06, 0.08, and 0.10 were chosen for the study.
These samples were the disks with a thickness of 3 mm and
a diameter of 30 mm. The samples homogeneity and the
single crystal mosaic were controlled by the x-ray Laue dif-
fraction at Helmholtz-Zentrum Berlin. The crystal structure
of the doped compounds Mn1−yFeySi is the same for the
crystals under study. The magnetization was measured with
the Quantum Design physical properties measurement
system �PPMS�.

The polarized SANS experiments were carried out at the
SANS-2 scattering facility of the FRG-1 research reactor in
Geesthacht �Germany�. A polarized beam of neutrons with an
initial polarization of P0=0.93, the neutron wavelength �
=0.58 nm ��� /�=0.1�, and a divergence of 2.5 mrad was
used. The scattered neutrons were detected by a position sen-
sitive detector with 256�256 pixels. The detector-sample
distance was set such that the Q range was covered from 6
�10−2 to 1 nm−1 with a step of 0.01 nm−1. We applied the
magnetic field oriented perpendicularly to the incident beam,
which was ranged from 0 to 800 mT.21 The scattering inten-
sities �I�Q , P0�� and �I�Q ,−P0�� were detected with the po-
larization +P0= �+P0h� along and −P0= �−P0h� opposite to
the magnetic field h. The observed Bragg reflections are
characterized by two quantities: �i� the intensity

I�Q� = �I�Q,P0� + I�Q,− P0��

and �ii� the polarization

Ps�Q� =
�I�Q,P0� − I�Q,− P0��
�I�Q,P0� + I�Q,− P0��

.
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Two types of measurements were performed in the experi-
ment: �i� study of the temperature evolution of the helixes
close to Tc in zero field and �ii� study of the effect of the
magnetic field on the helix structure below Tc. Both tempera-
ture and magnetic-field evolutions are very similar for the
samples under study with the only difference in the value of
the critical temperature and in the magnitude of the critical
fields HC1 and HC2. Below we show the maps of SANS
intensities taken from the representative compound
Mn0.92Fe0.08Si with Tc=10.55�0.05 K.

B. Temperature evolution

Examples of the critical scattering for neutron polariza-
tion P0 along and opposite the guide field of order of 1 mT
are shown in Fig. 1. The diffuse scattering at T=14 K, i.e.,
well above Tc �Fig. 1�a��, looks like blurred spots on the left
and right sides of the maps for two different polarizations
�P0. The spots are transformed into the half-moon images
close to Tc at T=10.75 K �Fig. 1�b��. The sum of the inten-
sities of two opposite polarizations forms an anisotropic ring
with weak spots, which below Tc transforms into the Bragg

peaks, while the ring disappears �Fig. 1�c��. It is important to
not that the asymmetric P-dependent scattering is a finger-
print of the single chirality of the spin helix that corresponds
to the sign of the DM interaction. The radius of the ring of
intensity observed above Tc gives the value of the helix wave
vector 
k
 and its width gives the inverse correlation length 	
in the direction along k. We argue that the nature of the
critical fluctuations is determined by competition of two
length scales: 	 and the helix wave vector k. Indeed, when
the full 2
 twist of the helix is well established within the
fluctuations �	 /k�1�, the DMI plays an important role.
Hence the noncollinearity of the spin fluctuations is impor-
tant close to the transition at large distances and reveals itself
through the well resolved half moons in Fig. 1�b�. Otherwise,
the full 2
 twist of the helix is not completed inside the
critical fluctuation �	 /k�1� and the fluctuations are of the
ferromagneticlike nature. In this case noncollinearity is ines-
sential and the nature of the fluctuations has to be close to
that in conventional ferromagnets. This leads to smearing of
half moons �Fig. 1�a��.

A typical example of the magnetic scattering at T=8 K
�that is below Tc� shows presence of several reflections with
the differently oriented helix wave vector k of the same
length. The couples of peaks, symmetrically disposed with
respect to the origin �000�, characterize domains oriented in
certain direction of a crystal structure. For example, the helix
wave vector of pure MnSi is clearly oriented along the �111�
axes with the magnetic mosaic of order of 2–3 degrees.16 The
k vector of the doped samples has an ill-defined direction
since the Bragg peaks are smeared around either �111� or
�100� axes. The location of the helix wave vector k in the
reciprocal space for the sample Mn0.92Fe0.08Si was measured
at T=8 K by making the wide-range � scan around the
�111� axis. The schematic distribution of the scattered inten-
sity on the sphere of radius 
k
 in the reciprocal space is
shown in Fig. 2�a�. The maxima of the intensity are observed
around �111� and �100� axes. The mosaic of these maxima
extends up to 10–15 degrees. Figure 2�b� shows the cross

section of the sphere by the plane �11̄0� that includes all

principal axis of the cubic crystal ��111�, �111̄�, �001�, and

�110��. The reflections are observed along the �111�, �111̄�,
and �001� directions and no intensity is visible along the

FIG. 1. �Color online� Maps of the polarized SANS intensities
of the sample Mn0.92Fe0.08Si �Tc=10.55�0.05 K� for the polariza-
tion P0 along the guide field �left� and opposite to it �right� at T
=14 K �a�, T=10.75 K �b�, T=8.75 K �c�.

FIG. 2. �Color online� The schematic distribution of the scat-
tered intensity on the sphere of radius 
k
 in the reciprocal space for
the sample Mn0.92Fe0.08Si �a�. The SANS map taken for nonpolar-
ized neutrons represents the cross section of the sphere by the plane

�11̄0� �b�.
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�110� direction. This observation is unusual from the point of
view of the Back-Jensen theory.5 The anisotropic energy that
fixes the orientation of the helix wave vector is given by the
expression16

EAN = FL�k̂� = 2F sin2 
�sin2 � cos2 � + cos2 
� , �5�

where L�k̂� is a cubic invariant determining the k orientation
relative to the crystal axes �
 and � are the corresponding
angles� and F is the strength of the anisotropic interactions
determined by the cubic anisotropy and the anisotropic ex-
change. The cubic invariant describes the energy landscape

with L�k̂� minimal and is equal to 0 when k̂ � �100� and L�k̂�
is maximal and is equal to 2/3 when k̂ � �111�. The �110�
directions are saddle points. Therefore, the orientation of k is
fixed along the �100� axes if constant F�0 and along the
�111� axes if constant F�0. The simultaneous appearance of
the orientation k along �100� and �111� axes means that the
constant F is a value spatially fluctuating around zero. This
ill-defined orientation of the wave vector k in given case is
caused by a disorder induced by Fe doping into the pure
MnSi compound. One can suppose that the doping induces
randomness in the local anisotropy and, therefore, unpins
partially the directions of spirals. The similar phenomenon is
observed in FeGe �Tc=287 K�, when the anisotropy con-
stant F changes sign at T�220 K from positive �k along
�100�� at high temperatures to negative �k along �111�� at
low temperatures. The transition in the orientation undergoes
with temperature hysteresis with the width of order of 20 K
within which range two orientations of the k vector may
coexist.22

C. Magnetic-field evolution

As is well known1,2,15,16 the magnetic field affects
strongly the helix structure of the pure MnSi system. The
transformations under applied magnetic field are very typical
for all compounds under study. The magnetization M�H� and
magnetic susceptibility ��H�=dM /dH measured at T=2 K
and T=10 K for the representative compound with y=0.08
are shown in Figs. 3�a� and 3�b�, respectively.

The magnetization increases linearly with the magnetic
field changing the slope in the field range H	HC1. This
corresponds to the process of reorientation of the helix do-
mains along the field axis shown in Fig. 4. In the scattering
picture it is seen as an accumulation of the intensity of the
different Bragg spots to the single one with k along the field.
The threshold field HC1 can be defined as a field which sup-
presses the crystal anisotropy and forms the single domain of
the conical spirals. With further increase in the magnetic field
magnetization demonstrates the linear dependence up to the
field HC2, where it saturates indicating the field-induced
phase transition from the conical to the ferromagnetic state.
The Bragg spots vanish at H=HC2. The peculiarities of the
M�H� dependence and different slopes �1 and �2 are well
revealed in the ��H� dependence.

The similar change in the slope in the magnetization
curve at HC1 was observed in the relative compounds
Fe1−xCoxSi �see Ref. 18�. It was interpreted as a consequence

of the unusual form of the magnetic energy of the helical
structure, which for the unit cell is given by13

EMag = − g�BS� H�
2

2HC2
+

H�
2 �2

4HC2��2 − �g�BH��2/2�
 + FL�k̂� ,

�6�

where S is the total spin of the unit cell, H� and H� are the
field components along and perpendicular to the helix wave
vector k, and � is the spin-wave gap. The first term with H�

is a classical part of the Zeeman energy. The second one has
a quantum origin and it describes the interaction of the field,
perpendicular to k, with the helix as an individual entity. The
third term is the cubic anisotropy and anisotropic exchange
given by Eq. �5�.

In a weak magnetic field H�HC1, when the directions of
the helix axes k are frozen by the local anisotropy, the k
vectors have different orientations with respect to the mag-
netic field. The components of the magnetic field can be
given as �H�

2�=�H2 and �H�
2 �= �1−��H2, where � is the av-

erage value of the square of the cosine of the angle between
the field and helix wave vector k. In this case the magnetic
energy is EMag,1=−g�BSH2�1+�� / �4HC2�, where the L term
is taken into account as a source of the anisotropy keeping k
noncollinear to H. In a strong field H�HC1, when the k
vector is along the field direction and H�=0, then EMag,2
=−g�BSH2 / �2HC2�. The magnetic susceptibility is deter-
mined as
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FIG. 3. Magnetic-field dependence of the magnetization M and
susceptibility � taken at T=2 K �a� and T=10 K �b� for
Mn0.92Fe0.08Si compound.
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� = −
1

H

dEMag

dH
�7�

and one obtains for the ratio of two susceptibilities in the
weak and strong magnetic fields

�1

�2
=

1 + �

2
. �8�

In case of the randomly orientated helix axes �=1 /3 and the
ratio �1 /�2=2 /3. This theoretical prediction is in agreement
with the experimental data presented in Fig. 3�a�. Indeed, the
ratio of the two slopes �1 /�2	0.70. Thus the crossover ob-
served in the magnetization curve is explained by the pres-
ence of the second field-dependent term �quantum term
�H�� in the expression of the magnetic energy �Eq. �6��.

An interesting feature in the magnetic-field behavior takes
place near Tc. There is a k-flop region, where helix instabil-
ity occurs and spin helices undergo the 90° jump from k �H
to k�H. In the neutron diffraction experiment it is seen as
decrease in the intensity of the Bragg reflection at q=k �H,
while a new Bragg spot appears at k�H. The typical SANS
pattern for the k-flop phase is shown in Fig. 5. The integral
intensity of the Bragg reflection �at k �H� shows a deep mini-
mum at Hfl=200 mT seen in Fig. 6. The increase in the
scattering intensity at q=k�H is shown in the inset of Fig.
6.

To interpret this k-flop phenomenon we consider again
the evolution of the helical structure upon increasing mag-

netic field on the basis of Eq. �6�. Close to Tc the term GL�k̂�
is very small and it can be neglected. Hence the direction of
the helix vector k is determined by the competition of the
first two terms in Eq. �6�. The first one ��H�

2� tends to orient
the helix wave vector k along the field, while the second one
��H�

2 � favors the orientation of k perpendicular to H. If

FIG. 4. �Color online� Maps of the polarized SANS intensities
of the Mn0.92Fe0.08Si compound under applied magnetic field H
=20 mT �a�, 50 mT �b�, and 120 mT �c� at T=8 K.

FIG. 5. �Color online� Map of the polarized SANS intensity of
the Mn0.92Fe0.08Si compound under applied magnetic field H
=200 mT at T=10 K.

FIG. 6. The field dependence of the integral SANS intensity at
k �H for the Mn0.92Fe0.08Si compound at T=10 K. The inset gives
the field dependence of the integral SANS intensity at k�H.
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g�BH�� the first term is dominant and k is parallel to the
magnetic field. If the field approaches the value �2� /g�B,
the orientation of k�H becomes more favorable as both
terms are negative. When g�BH��2� the second term is
unreasonable13 and k returns back to the field axis. There-
fore, the field value associated with the top field boundary of
the k-flop phase is denoted as Hgap.

This scenario is exactly observed in this paper as well as
for Fe1−xCoxSi in Ref. 18. So we observe the k flop under an
applied field from one energetically favorable direction �par-
allel to the field� to the other �perpendicular to it�. This k flop
gives the experimental evidence for the spin-wave gap �
�g�BHfl /�2. �For Mn0.92Fe0.08Si, e.g., �	28 �eV.� As
was shown in Ref. 13 the major contribution to the spin-
wave gap in zero field stems from the interaction between
spin waves and is determined by the DM interaction �SW

2

=d�HC2
2 / �4S��, where the numerical coefficient d�1 cannot

be evaluated. Upon decrease in the temperature the aniso-
tropy expressed by the last term in Eq. �6� arises and, thus,
changes the energy landscape not allowing the easy k flop at
H�Hfl �see for example Ref. 16�.

III. (H-T) PHASE DIAGRAMS AND PRINCIPAL
INTERACTIONS

A. (H-T) phase diagram

The experimental findings of Sec. II are summarized in
the H-T phase diagrams. The critical fields HC1 and HC2 are
plotted as a function of temperature in Fig. 7 for the com-
pounds with y=0.06, 0.08, and 0.10. Well below Tc these
two fields determine the state of the magnetic system. In the
range of the fields 0�H�HC1 the spin helix structure occurs
in the multidomain state with the k vector oriented along
principal directions of the cube. For pure MnSi these direc-
tions are the four �111� axes. The increase in Fe concentra-
tion leads to some disorientation of k and to enhancement of
additional Bragg peaks along �100�. In the field range be-
tween HC1 and HC2 the samples are single domain with the
conical spin structure along the field axis �k �H�. The fields
above HC2 force the spin structure to be ferromagnetically
ordered.

Note that the value of the critical temperature was deter-
mined as the point where the shape of the peak in q depen-
dence changes from the Gaussian below Tc to the Lorentzian
above Tc. Thus determined Tc coincides with the temperature
where the Bragg peaks transform into the half-moon images
of the critical scattering coming from the fluctuations �see
Fig. 1�b��. They are equal to Tc=28.8�0.05, 16.5�0.05,
10.55�0.05, and 6.8�0.05 K for the samples with y=0.0,
0.06, 0.08, and 0.10, respectively.

These compounds show unusual behavior in the critical
temperature range. Just below Tc a flop of the helix wave
vector k occurs in a certain field range. It is seen as a 90°
jump of the wave vector from k �H to k�H. The field Hfl in
Fig. 7 �triangles� shows the boundary of the k-flop phase.
The upper field boundary of the k-flop phase is prescribed to
the field Hgap corresponding to the spin-wave gap �see inter-
pretation above�. Just above Tc for all compounds
Mn1−yFeySi the magnetic structure melt into the fluctuations

of helix structure with random orientations the wave vector
k. The half moons of intensity are well visible in this tem-
perature range Tc�T�T� and under magnetic field H
�HC2. We marked this range by the dashed lines in the H
−T phase diagrams. The k-flop phase overlaps partially with
this dashed critical range since the k flop is visible above the
critical temperature as well. It is found that the interval
�T�=T�−Tc widens with doping y :�T�	0.9 K, 2 K, 2.4 K,
and 3.5 K for y=0, 0.06, 0.08, and 0.10, respectively.

B. Hierarchy of principal interactions

The �H-T� phase diagrams shown in Fig. 7 are typical for
the cubic helical magnets including the ternary compounds
under study Mn1−yFeySi and the compounds Fe1−xCoxSi stud-
ied in Refs. 17 and 18. The similarity of the �H-T� phase
diagrams suggests that their magnetic systems are governed
by the same set of the interactions whose interplay deter-
mines the values of the critical fields HC1, HC2, and Hgap
=Hfl2 as well as the value of the helix wave vector k. The
concentration dependences of these four parameters are
shown in Fig. 8. Here HC1 and HC2 are determined as values
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taken at the lowest measured temperature. The value of the
helix wave vector 
k
=k=2
 /d changes significantly �Fig.
8�a�� showing a linear increase from 0.35 to 0.63 nm−1 with
doping y, i.e., the helix length shortens from 185 to 100 Å.
The values of HC1 �Fig. 8�c�� and Hfl2 �Fig. 8�d�� increases
with doping as well. The value of HC2 �Fig. 8�b�� demon-
strates relatively small changes.

As is explained in Sec. I, the phase diagram and the val-
ues of HC1, HC2, k, and Hgap are well interpreted within the
theory recently developed by one of the authors �see Ref. 13�
on the basis of the Bak-Jensen model.5 The theory suggests
that using Eqs. �1�–�4� one is able to estimate the major
driving interactions of the magnetic system, such as the an-
isotropy constant F�2g�BHC1 /k2, the spin-wave stiffness

A=g�BHC2 /k2, the Dzyaloshinskii constant SD=Ak, and the
spin-wave gap ��g�BHgap /�2. The calculated energies of
the principal interactions F /a2, A /a2, SD /a, and � are
shown in Fig. 9 as a function of y �here a is the lattice
parameter�.

The exchange energy A /a2 decreases linearly from 2.4 to
0.8 meV �Fig. 9�a��. The extrapolation �dashed line� gives
the critical concentration y	0.15 where the spin-wave stiff-
ness �and, consequently, the exchange interaction� becomes
zero. Apparently it is a result of frustrations enhancing with
the Fe doping. The energy of DM interaction coupled to the
average spin SD has a moderated decrease from 0.4 to 0.25
meV. �Fig. 9�b��. The anisotropy constant F /a2 decreases
with doping y �Fig. 9�c�� that correlates to the disorientation
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of the k vector in the doped systems. Opposite to these three,
the spin-wave gap � linearly increases from value 12 to
30 �eV �Fig. 9�d��.

Remarkable though that this set of the principal interac-
tions is able to explain the concentration dependence of the
critical temperature Tc plotted in Fig. 10. Tc is well seen to
decrease linearly with the Fe concentration y in agreement
with the early studies �see Ref. 11 and references therein�.
This tendency and its extrapolation suggest that the Fe dop-
ing can lead this system to the quantum phase transition at
y	0.13. Indeed, the increase of the non-thermal parameter,
the concentration y, results in Tc approaching 0, which is, by
definition, the Quantum Critical Point �QCP�. This concept
enables us to model the behavior of the system close to the
QPT using the Fe concentration as a nonthermal parameter.
Now we can follow the evolution of the system on the way
to the QPT using the estimations of the principal interactions
and how they change with doping y.

To compare the spin-wave stiffness with Tc, we plot the
value of A / �a2kB� on the same graph as Tc in Fig. 10. It
should be noted that both values have the same linear behav-
ior as a function of y and the two lines displace close to one
another in the �T-y� phase diagram. Nevertheless, the calcu-
lated points of A / �a2kB� lay somewhat higher than the ex-
perimental Tc ones leaving a space for a new partially or-
dered magnetic state. Indeed, the values of T�, the upper
boundary of the partially disordered phase, coincides practi-
cally with the values of A / �a2kB�. For completeness, we
added the y dependence of SD / �akB� to Fig. 10.

IV. DISCUSSION

As is well known the hierarchy of interactions determines
the magnetic properties of the Mn1−xFexSi compounds. The
competition of two interactions is stabilized in the helix spin
structure with the wave vector k, which length is, by defini-
tion, the ratio SD /A. As k increases with concentration y
�Fig. 8�a��, then one can expect that influence of DM inter-
action increases compared to the isotropic exchange interac-
tion. The comparison of energies �A and SD� plotted in the
�T-y� phase diagram �Fig. 10� shows that value of SD /akB

becomes of the same order as A /a2KB in the region 0.13
�y�0.15. The ordering temperature Tc is clearly deter-
mined by the decreasing value of the isotropic exchange in-
teraction. On the other hand, the existence of the fluctuating
disordered phase below T� and above Tc is related to the DM
interaction. We relate the temperature range, where the ring
of scattering is visible �T�=T�−Tc with the value of the
wave vector k. The dependence of �T� versus square of the
wave vector k2 for the all samples is shown in the Fig. 11.
The experimental points �T� linearly depends on k2 ��T�

=C�ka�2 with C=3.5�0.3 K�, giving the experimental
proof for existence of the critical temperature range with the
dominating influence of the DM interaction. It is interesting
to note that the critical fluctuations above Tc were studied in
the mean-field approximation in.23 It was shown there that
DM interaction renormalizes the transition temperature and
we have Tc=Tc0+C�k2. It can be that observed above the
partially ordered state is a result of this renormalization.
However, analysis of this problem is out of the scope of this
paper.

Finally, the phase diagram �Fig. 7� shows the paramag-
netic state above T�, orientationally disordered fluctuating
state in the narrow range between T� and Tc and the ordered
helix state below Tc. The linear approximation Tc→0 gives
the critical concentration yc=0.13 at which the ordered state
could not be observed. The compound with yc=0.13 should
have rather complicated picture of the critical phenomena,
which can possibly mimic the conditions of the quantum
phase transition.

The �T-y� phase diagram of the Mn1−yFeySi compounds
�Fig. 10� and the �T-P� phase diagram of pure MnSi �Fig. 6
in Ref. 24� duplicate one another. In the former and latter
cases the increase in y and P, respectively, results in the
decrease in Tc. From the parameters k and HC2 of these com-
pounds we have estimated the values of the principal inter-
actions A and SD. It should be noted that neither k nor HC2
change with the increase in the pressure in MnSi. Thus one
concludes that principal interactions �A and SD� do not
change under applied pressure, implying another “hidden”
parameter that causes changes in Tc under the pressure.
Comparison of two phase diagrams, which look so similar,
however, shows that they are driven by the different interac-
tions. In case of the �T-y� phase diagram of the Mn1−yFeySi
compounds the critical temperature is clearly determined by
the exchange integral. The exchange integral decreases with
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FIG. 11. Dependence of the temperature �T� on the squared the
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GRIGORIEV et al. PHYSICAL REVIEW B 79, 144417 �2009�

144417-8



Fe doping due to competition between ferromagnetic �Mn-
Mn� and antiferromagnetic �Mn-Fe� bonds as it is often ob-
served in the binary alloys of the 3d metals. In case of the
�T-P� phase diagram of pure MnSi the hidden parameter
drives the system to the disordered state. As has been noticed
in Sec. I the hidden parameter was suggested to be the spin-
wave gap �2, which consists of two parts: the positive one,
determined by DM interaction, and the negative one, deter-
mined by the magnetoelastic interaction.14 Presumably, the
quantum phase transition occurs when �2=0.

In our estimations using Eqs. �1�–�4� the value of the DM
interaction is coupled to the average spin per unit cell SD /a.
In fact the average spin changes with the concentration y
and, therefore, it is interesting to obtain the true numbers for
the Dzyaloshinskii constant �BD /a. The values of the aver-
age spin can be found in Ref. 11 and after division to the
value of �S� one obtains the numbers of �BD /a for different
concentrations of y. For completeness, we calculated thus
obtained values of �BD /a for the other compound
Fe1−xCoxSi described in Refs. 17 and 18. The combined data
are shown in Fig. 12. The obtained numbers for the Dzy-
aloshinskii constant �BD /a fluctuate around value of
1.15�0.1 meV. Thus, one can conclude that the Dzy-
aloshinskii constant D /a does not depend on the concentra-
tion of these compounds �either Mn1−yFeySi or x for
Fe1−xCoxSi� and is the intrinsic number inherent to the crys-
tallographic structure with the symmetry P213 and the lattice
constant of order of 0.45 nm.

V. CONCLUDING REMARKS

We have carried out polarized neutron diffraction experi-
ments to study the magnetic structure in Mn1−yFeySi single

crystals with y=0, 0.06, 0.08, and 0.10. Below Tc in zero
field Mn1−yFeySi is shown to have a multidomain helix struc-
ture. Increasing of the Fe concentration y results in rise of the
disorder inside the compound: if for small y the helix axis
orients along the �111� direction, then for y�0.06 the helix
wave vector k has a tendency to reorientation of the wave
vector to �100�. The magnetic field induces a single domain
structure with the helix wave vector oriented along the field
axis at H=HC1. The field HC1 determines the energy of the
magnetic anisotropy. In the vicinity of Tc the field-dependent
integral intensity of the Bragg reflection shows a sharp mini-
mum at H=Hgap. This phenomenon is well explained by the
presence of a spin-wave gap g�BHgap /�2 that provides the
stability of the spin-wave spectrum with respect to the per-
pendicular magnetic field. Further increase in the applied
field leads to a magnetic phase transition from a conical to a
ferromagnetic state close to HC2. On the basis of these mea-
surements we have built the �H-T� phase diagrams for each
compound.

These phase diagrams show that the same set of param-
eters governs the magnetic system in these compounds. Fur-
thermore, we have evaluated the major interactions of the
system A, D, F, and � from our the experiment using the
theory.13 As was found the spin-wave stiffness constant A /a2

resembles the behavior of the critical temperature Tc decreas-
ing linearly with y but the spin-wave gap �, on the contrary,
increases with y. Thus, we demonstrate that the isotropic
exchange interaction determines Tc in these compounds.

The DM interaction influences significantly the critical
phenomena in these compounds. We demonstrate the en-
hancement of the fluctuating helical phase in the narrow tem-
perature range Tc�T�T�. The temperature range �T�,
where this phase occurs, is found to be proportional to k2.
This range increases with increase in y and, though is notice-
able for pure MnSi, is especially important at y�0.1. Further
detailed study of the compound with yc�0.13 is very desir-
able to realize the peculiar situation when the isotropic ex-
change A is zero but the DM interaction has a finite value.
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